Moteur de recherche de fiches techniques de composants électroniques
  French  ▼
ALLDATASHEET.FR

X  

LM317HVH Fiches technique(PDF) 5 Page - National Semiconductor (TI)

[Old version datasheet] Texas Instruments acquired National semiconductor. Click here to check the latest version.
No de pièce LM317HVH
Description  3-Terminal Adjustable Regulator
Download  15 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Fabricant  NSC [National Semiconductor (TI)]
Site Internet  http://www.national.com
Logo NSC - National Semiconductor (TI)

LM317HVH Fiches technique(HTML) 5 Page - National Semiconductor (TI)

  LM317HVH Datasheet HTML 1Page - National Semiconductor (TI) LM317HVH Datasheet HTML 2Page - National Semiconductor (TI) LM317HVH Datasheet HTML 3Page - National Semiconductor (TI) LM317HVH Datasheet HTML 4Page - National Semiconductor (TI) LM317HVH Datasheet HTML 5Page - National Semiconductor (TI) LM317HVH Datasheet HTML 6Page - National Semiconductor (TI) LM317HVH Datasheet HTML 7Page - National Semiconductor (TI) LM317HVH Datasheet HTML 8Page - National Semiconductor (TI) LM317HVH Datasheet HTML 9Page - National Semiconductor (TI) Next Button
Zoom Inzoom in Zoom Outzoom out
 5 / 15 page
background image
Application Hints
In operation, the LM117HV develops a nominal 1.25V refer-
ence voltage, V
REF, between the output and adjustment ter-
minal. The reference voltage is impressed across program
resistor R1 and, since the voltage is constant, a constant
current I
1 then flows through the output set resistor R2, giv-
ing an output voltage of
Since the 100 µA current from the adjustment terminal repre-
sents an error term, the LM117HV was designed to minimize
I
ADJ and make it very constant with line and load changes.
To do this, all quiescent operating current is returned to the
output establishing a minimum load current requirement. If
there is insufficient load on the output, the output will rise.
External Capacitors
An input bypass capacitor is recommended. A 0.1 µF disc or
1 µF solid tantalum on the input is suitable input bypassing
for almost all applications. The device is more sensitive to
the absence of input bypassing when adjustment or output
capacitors are used but the above values will eliminate the
possiblity of problems.
The adjustment terminal can be bypassed to ground on the
LM117HV to improve ripple rejection. This bypass capacitor
prevents ripple from being amplified as the output voltage is
increased. With a 10 µF bypass capacitor 80 dB ripple rejec-
tion is obtainable at any output level. Increases over 10 µF
do not appreciably improve the ripple rejection at frequen-
cies above 120 Hz. If the bypass capacitor is used, it is
sometimes necessary to include protection diodes to prevent
the capacitor from discharging through internal low current
paths and damaging the device.
In general, the best type of capacitors to use are solid tanta-
lum. Solid tantalum capacitors have low impedance even at
high frequencies. Depending upon capacitor construction, it
takes about 25 µF in aluminum electrolytic to equal 1 µF
solid tantalum at high frequencies. Ceramic capacitors are
also good at high frequencies; but some types have a large
decrease in capacitance at frequencies around 0.5 MHz. For
this reason, 0.01 µF disc may seem to work better than a 0.1
µF disc as a bypass.
Although the LM117HV is stable with no output capacitors,
like any feedback circuit, certain values of external capaci-
tance can cause excessive ringing. This occurs with values
between 500 pF and 5000 pF. A 1 µF solid tantalum (or 25 µF
aluminum electrolytic) on the output swamps this effect and
insures stability. Any increase of load capacitance larger
than 10 µF will merely improve the loop stability and output
impedance.
Load Regulation
The LM117HV is capable of providing extremely good load
regulation but a few precautions are needed to obtain maxi-
mum performance. The current set resistor connected be-
tween the adjustment terminal and the output terminal (usu-
ally 240
Ω) should be tied directly to the output of the
regulator rather than near the load. This eliminates line
drops from appearing effectively in series with the reference
and degrading regulation. For example, a 15V regulator with
0.05
Ω resistance between the regulator and load will have a
load regulation due to line resistance of 0.05
Ω xI
L. If the set
resistor is connected near the load the effective line resis-
tance will be 0.05
Ω (1 + R2/R1) or in this case, 11.5 times
worse.
Figure 2 shows the effect of resistance between the regula-
tor and 240
Ω set resistor.
With the TO-3 package, it is easy to minimize the resistance
from the case to the set resistor, by using two separate leads
to the case. However, with the TO-5 package, care should be
taken to minimize the wire length of the output lead. The
ground of R2 can be returned near the ground of the load to
provide remote ground sensing and improve load regulation.
Protection Diodes
When external capacitors are used with
any IC regulator it is
sometimes necessary to add protection diodes to prevent
the capacitors from discharging through low current points
into the regulator. Most 10 µF capacitors have low enough
internal series resistance to deliver 20A spikes when
shorted. Although the surge is short, there is enough energy
to damage parts of the IC.
When an output capacitor is connected to a regulator and
the input is shorted, the output capacitor will discharge into
the output of the regulator. The discharge current depends
on the value of the capacitor, the output voltage of the regu-
lator, and the rate of decrease of V
IN. In the LM117HV, this
discharge path is through a large junction that is able to sus-
tain 15A surge with no problem. This is not true of other
types of positive regulators. For output capacitors of 25 µF or
less, there is no need to use diodes.
The bypass capacitor on the adjustment terminal can dis-
charge through a low current junction. Discharge occurs
when
either the input or output is shorted. Internal to the
LM117HV is a 50
Ω resistor which limits the peak discharge
current. No protection is needed for output voltages of 25V
DS009062-5
FIGURE 1.
DS009062-6
FIGURE 2. Regulator with Line
Resistance in Output Lead
www.national.com
5


Numéro de pièce similaire - LM317HVH

FabricantNo de pièceFiches techniqueDescription
logo
Texas Instruments
LM317HVH TI1-LM317HVH Datasheet
2Mb / 28P
[Old version datasheet]   High Voltage Three-Terminal Adjustable Regulator
LM317HVH TI1-LM317HVH Datasheet
2Mb / 26P
[Old version datasheet]   High Voltage Three-Terminal Adjustable Regulator With Overload Protection
LM317HVH/NOPB TI1-LM317HVH/NOPB Datasheet
2Mb / 28P
[Old version datasheet]   High Voltage Three-Terminal Adjustable Regulator
LM317HVH/NOPB TI1-LM317HVH/NOPB Datasheet
2Mb / 26P
[Old version datasheet]   High Voltage Three-Terminal Adjustable Regulator With Overload Protection
More results

Description similaire - LM317HVH

FabricantNo de pièceFiches techniqueDescription
logo
National Semiconductor ...
LM337L NSC-LM337L Datasheet
89Kb / 5P
   3-Terminal Adjustable Regulator
logo
Texas Instruments
LM317 TI1-LM317_16 Datasheet
1Mb / 32P
[Old version datasheet]   3-Terminal Adjustable Regulator
logo
List of Unclassifed Man...
GM317 ETC-GM317 Datasheet
352Kb / 8P
   3- TERMINAL ADJUSTABLE REGULATOR
logo
Texas Instruments
LM317M TI-LM317M_07 Datasheet
219Kb / 12P
[Old version datasheet]   3-TERMINAL ADJUSTABLE REGULATOR
LM317M_0701 TI-LM317M_0701 Datasheet
369Kb / 14P
[Old version datasheet]   3-TERMINAL ADJUSTABLE REGULATOR
logo
National Semiconductor ...
LM117 NSC-LM117 Datasheet
645Kb / 25P
   3-Terminal Adjustable Regulator
logo
Texas Instruments
LM317MQDCYRG4 TI1-LM317MQDCYRG4 Datasheet
868Kb / 17P
[Old version datasheet]   3-TERMINAL ADJUSTABLE REGULATOR
logo
Tiger Electronic Co.,Lt...
LM317L TGS-LM317L Datasheet
382Kb / 14P
   3-TERMINAL ADJUSTABLE REGULATOR
logo
Texas Instruments
LM317M TI-LM317M Datasheet
219Kb / 12P
[Old version datasheet]   3-TERMINAL ADJUSTABLE REGULATOR
logo
National Semiconductor ...
LM317L NSC-LM317L_06 Datasheet
918Kb / 16P
   3-Terminal Adjustable Regulator
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15


Fiches technique Télécharger

Go To PDF Page


Lien URL




Politique de confidentialité
ALLDATASHEET.FR
ALLDATASHEET vous a-t-il été utile ?  [ DONATE ] 

À propos de Alldatasheet   |   Publicité   |   Contactez-nous   |   Politique de confidentialité   |   Echange de liens   |   Fabricants
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com