Moteur de recherche de fiches techniques de composants électroniques
  French  ▼
ALLDATASHEET.FR

X  

CS51412G Fiches technique(PDF) 10 Page - ON Semiconductor

No de pièce CS51412G
Description  1.5A, 260 kHz AND 520 kHz, LOW VOLTAGE BUCK REGULATORS WITH EXTERNAL BIAS OR SYNCHRONIZATION CAPABILITY
Download  16 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Fabricant  ONSEMI [ON Semiconductor]
Site Internet  http://www.onsemi.com
Logo ONSEMI - ON Semiconductor

CS51412G Fiches technique(HTML) 10 Page - ON Semiconductor

Back Button CS51412G Datasheet HTML 6Page - ON Semiconductor CS51412G Datasheet HTML 7Page - ON Semiconductor CS51412G Datasheet HTML 8Page - ON Semiconductor CS51412G Datasheet HTML 9Page - ON Semiconductor CS51412G Datasheet HTML 10Page - ON Semiconductor CS51412G Datasheet HTML 11Page - ON Semiconductor CS51412G Datasheet HTML 12Page - ON Semiconductor CS51412G Datasheet HTML 13Page - ON Semiconductor CS51412G Datasheet HTML 14Page - ON Semiconductor Next Button
Zoom Inzoom in Zoom Outzoom out
 10 / 16 page
background image
CS51411, CS51412, CS51413, CS51414
http://onsemi.com
10
IRMS + IO D(1 * D)
where:
D = switching duty cycle which is equal to VO/VIN.
IO = load current.
Figure 10. Input Voltage Ripple in a Buck Converter
To calculate the RMS current, multiply the load current
with the constant given by Figure 11 at each duty cycle. It is
a common practice to select the input capacitor with an RMS
current rating more than half the maximum load current. If
multiple capacitors are paralleled, the RMS current for each
capacitor should be the total current divided by the number
of capacitors.
Figure 11. Input Capacitor RMS Current can be
Calculated by Multiplying Y Value with Maximum Load
Current at any Duty Cycle
0
0.2
0.4
1.0
Duty Cycle
0
0.1
0.3
0.4
0.5
0.6
0.2
0.6
0.8
Selecting the capacitor type is determined by each
design’s
constraint
and
emphasis.
The
aluminum
electrolytic capacitors are widely available at lowest cost.
Their ESR and ESL (equivalent series inductor) are
relatively high. Multiple capacitors are usually paralleled to
achieve lower ESR. In addition, electrolytic capacitors
usually need to be paralleled with a ceramic capacitor for
filtering high frequency noises. The OS–CON are solid
aluminum electrolytic capacitors, and therefore has a much
lower ESR. Recently, the price of the OS–CON capacitors
has dropped significantly so that it is now feasible to use
them for some low cost designs. Electrolytic capacitors are
physically large, and not used in applications where the size,
and especially height is the major concern.
Ceramic capacitors are now available in values over 10
µF.
Since the ceramic capacitor has low ESR and ESL, a single
ceramic capacitor can be adequate for both low frequency
and high frequency noises. The disadvantage of ceramic
capacitors are their high cost. Solid tantalum capacitors can
have low ESR and small size. However, the reliability of the
tantalum capacitor is always a concern in the application
where the capacitor may experience surge current.
Output Capacitor
In a buck converter, the requirements on the output
capacitor are not as critical as those on the input capacitor.
The current to the output capacitor comes from the inductor
and thus is triangular. In most applications, this makes the
RMS ripple current not an issue in selecting output
capacitors.
The output ripple voltage is the sum of a triangular wave
caused by ripple current flowing through ESR, and a square
wave due to ESL. Capacitive reactance is assumed to be
small compared to ESR and ESL. The peak to peak ripple
current of the inductor is:
IP
* P +
VO(VIN * VO)
(VIN)(L)(fS)
VRIPPLE(ESR), the output ripple due to the ESR, is equal
to the product of IP–P and ESR. The voltage developed
across the ESL is proportional to the di/dt of the output
capacitor. It is realized that the di/dt of the output capacitor
is the same as the di/dt of the inductor current. Therefore,
when the switch turns on, the di/dt is equal to (VIN – VO)/L,
and it becomes VO/L when the switch turns off. The total
ripple voltage induced by ESL can then be derived from
VRIPPLE(ESL) + ESL(
VIN
L
)
) ESL(
VIN * VO
L
)
+ ESL(
VIN
L
)


Numéro de pièce similaire - CS51412G

FabricantNo de pièceFiches techniqueDescription
logo
ON Semiconductor
CS51412G ONSEMI-CS51412G Datasheet
706Kb / 20P
   1.5 A, 260 kHz and 520 kHz, Low Voltage Buck Regulators with External Bias or Synchronization Capability
September, 2007 - Rev. 18
CS51412GD8 ONSEMI-CS51412GD8 Datasheet
252Kb / 20P
   1.5 A, 260 kHz and 520 kHz, Low Voltage Buck Regulators with External Bias or Synchronization Capability
February, 2007 ??Rev. 17
CS51412GD8 ONSEMI-CS51412GD8 Datasheet
706Kb / 20P
   1.5 A, 260 kHz and 520 kHz, Low Voltage Buck Regulators with External Bias or Synchronization Capability
September, 2007 - Rev. 18
CS51412GD8G ONSEMI-CS51412GD8G Datasheet
252Kb / 20P
   1.5 A, 260 kHz and 520 kHz, Low Voltage Buck Regulators with External Bias or Synchronization Capability
February, 2007 ??Rev. 17
CS51412GD8G ONSEMI-CS51412GD8G Datasheet
706Kb / 20P
   1.5 A, 260 kHz and 520 kHz, Low Voltage Buck Regulators with External Bias or Synchronization Capability
September, 2007 - Rev. 18
More results

Description similaire - CS51412G

FabricantNo de pièceFiches techniqueDescription
logo
ON Semiconductor
CS51411 ONSEMI-CS51411_07 Datasheet
252Kb / 20P
   1.5 A, 260 kHz and 520 kHz, Low Voltage Buck Regulators with External Bias or Synchronization Capability
February, 2007 ??Rev. 17
CS51411-D ONSEMI-CS51411-D Datasheet
706Kb / 20P
   1.5 A, 260 kHz and 520 kHz, Low Voltage Buck Regulators with External Bias or Synchronization Capability
September, 2007 - Rev. 18
CS51411 ONSEMI-CS51411_12 Datasheet
290Kb / 20P
   1.5 A, 260 kHz and 520 kHz Low Voltage Buck Regulators with External Bias or Synchronization Capability
November, 2012 ??Rev. 20
NCV51411 ONSEMI-NCV51411 Datasheet
182Kb / 16P
   1.5 A, 260 kHz, Low Voltage Buck Regulator with Synchronization Capability
May, 2010 ??Rev. 15
NCV51411 ONSEMI-NCV51411 Datasheet
224Kb / 16P
   1.5 A, 260 kHz, Low Voltage Buck Regulator with Synchronization Capability
May, 2010 ??Rev. 15
NCV8842 ONSEMI-NCV8842_11 Datasheet
377Kb / 16P
   1.5 A, 170 kHz, Buck Regulator with Synchronization Capability
July, 2011 ??Rev. 10
NCV8842 ONSEMI-NCV8842 Datasheet
180Kb / 15P
   1.5 A, 170 kHz, Buck Regulator with Synchronization Capability
October, 2006 ??Rev. 1
NCV8843 ONSEMI-NCV8843 Datasheet
187Kb / 15P
   1.5 A, 340 kHz, Buck Regulator with Synchronization Capability
October, 2006 ??Rev. 1
NCP1546 ONSEMI-NCP1546 Datasheet
152Kb / 13P
   1.5 A, 170 kHz, Buck Regulator with Synchronization Capability
March, 2007 ??Rev. 0
NCV8843 ONSEMI-NCV8843_10 Datasheet
385Kb / 16P
   1.5 A, 340 kHz, Buck Regulator with Synchronization Capability
May, 2010 ??Rev. 10
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16


Fiches technique Télécharger

Go To PDF Page


Lien URL




Politique de confidentialité
ALLDATASHEET.FR
ALLDATASHEET vous a-t-il été utile ?  [ DONATE ] 

À propos de Alldatasheet   |   Publicité   |   Contactez-nous   |   Politique de confidentialité   |   Echange de liens   |   Fabricants
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com